
Demo 2 : Robust attitude control design of a spacecraft with 2

symmetrical solar arrays (run).

Table of Contents

1. Description... 1
2. The design model..2
3. Robust control design..6
4. Optimal design analysis...8
5. V&V (Verification and Validation).. 12
6. Comparison with a non robust synthesis.. 16
7. Summary..18

by D. Alazard, F. Sanfedino - ISAE-SUPAERO and E. Kassarian - DyCSyT.

1. Description
The objective is to design the Attitude Control System of the spacecraft presented in the Demo1 : a spacecraft
with 2 symmetrical solar arrays.

The SIMULINK model is the same, except that of relative uncertainty is taken into account on :

• the mass of the main body : mB,

• the 3 terms on the diagonal of the main body inertia: : IBx, IBy, IBz,

• the frequency of the 3 flexible modes of the solar array (identical for the 2 solar arrays): w1, w2, w3.

The mathematical framework used for the representation of parametric uncertainties is the Li<near Fractional

Transformation (LFT).

SCwith2SAcantilevered_U
Gu=ulinearize('SCwith2SAcantilevered_U')

Gu =

 Uncertain continuous-time state-space model with 6 outputs, 6 inputs, 12 states.
 The model uncertainty consists of the following blocks:
 IBx: Uncertain real, nominal = 75, variability = [-20,20]%, 1 occurrences
 IBy: Uncertain real, nominal = 40, variability = [-20,20]%, 1 occurrences
 IBz: Uncertain real, nominal = 80, variability = [-20,20]%, 1 occurrences
 mB: Uncertain real, nominal = 1e+03, variability = [-20,20]%, 3 occurrences
 tan_Theta_div4: Uncertain real, nominal = 0, range = [-1,1], 32 occurrences
 w1: Uncertain real, nominal = 5.6, variability = [-20,20]%, 4 occurrences
 w2: Uncertain real, nominal = 19.3, variability = [-20,20]%, 4 occurrences
 w3: Uncertain real, nominal = 35.4, variability = [-20,20]%, 4 occurrences

Type "Gu.NominalValue" to see the nominal value, "get(Gu)" to see all properties, and "Gu.Uncertainty" to interact with the uncertain elements.

This demo aims to show how the SIMULINK models made with SDTlib can be used for control design with the

robust control toolbox. The numerical data are given as an example and are not necessarily representative of

an actual application.

1

We consider the robust design of a 3- axis structured attitude control law to meet:

• (Req1) the pointing requirement (defined by the vector APE,) in spite of low frequency orbital

disturbances (characterized by the upper bound on the magnitude Tpert,),

• (Req2) stability margins characterized by an upper bound (gamma) on the norm of the input

sensitivity function.

while minimizing (Req3) the variance on the torque applied by the reaction wheel system on the spacecraft

in response to the star sensor and gyrometer noises characterized by their PSD (Power Spectral Density

PSD_SST and PSD_GYRO (assumed to be equal for the 3 components).

Numerical application:

% APE (Absolute Pointing Error) requirement
APE=[4 4 20]'*0.001*pi/180; % (rad)

% Orbital disturbance magnitude:
Tpert=[0.03 0.01 0.02]'; %(Nm)

% PSD of sensor noises:
PSD_GYRO=1e-10; %(rd^2/s),
PSD_SST=1e-8; % (rd^2.s),

% Upper bound on the input sensitivity function
gamma=1.5;

The value ensures on each of the 3 axes:

• a modulus margin ,

• a gain margin ,

• a phase margin .

The requirements Req1 and Req2 must be met for any values of:

• the uncertain mechanical parameters (mB, IPx, IBy, IBz w1, w2, w3), regrouped in a block in

reference to the LFT formalism,

• the geometrical configuration of the solar arrays.

The performance index Req3 is measured on the worst-case parametric configuration in , .

2. The design model
The design model is the SIMULINK file SC_CL_model_1.slx depicted in the following Figure.

2

The model previously computed (Gu) is introduced with an Uncertain State Space from the

Robust Control toolbox sub-library. Since the design will be based on the SIMULINK model and the

Matlab/Simulink slTuner interface, it is very important to specify again Gu in the Linear Analysis >
Specify Selected Block Linearization menu (obtained by a right click on the block Gu) according to

the following Figure.

Then the design model is completed with the avionics models for:

• the reaction wheel system dynamics: RW. A second order transfer with a damping ratio and a

frequency is assumed on each of the 3 axes,

• the star sensor dynamics: SST. A first order transfer with a cut-off frequency is assumed on each of

the 3 axes,

• the gyrometer dynamics: GYRO. A first order transfer with a cut-off frequency is assumed on each

of the 3 axes,

• a loop delay DELAY. A delay, modelled by a second order Pade approximation, is assumed on

each of the 3 axes.

% Avionics:

3

% RWs: 2nd order low pass at 100 Hz
RW=tf((200*pi)^2,[1 1.4*200*pi (200*pi)^2])*eye(3);
% SST: 1st order low pass at 8 hz
SST=tf(8*2*pi,[1 8*2*pi])*eye(3);
% GYRO: 1sr order low pass at 200 Hz
GYRO=tf(400*pi,[1 400*pi])*eye(3);
% Loop delay
delay=0.01; %(s) : delay due to discretizaton, sensors dynamics, etc.
[num,den]=pade(delay,2);
DELAY=tf(num,den)*eye(3);

The structured attitude control system (ACS) is depicted in the next figure.

It is a decentralised controller composed of a proportional-derivative controller (the 2 gains Kpi and Kvi,

i=x,y,z) with a first order low pass filter (characterized by the cut-off frequency wi, i=x,y,z) per axis.

The set of the 9 tunable parameters (Kpi, wi and Kvi, i=x,y,z) is denoted . They are roughly initialized

assuming a rigid 3-axis decoupled spacecraft and in order to:

4

• reject a constant orbital disturbance with a steady state pointing error lower that the absolute

pointing error requirement on each axis .

• tune the 2-nd order closed-loop dynamics of each axis with a damping ratio of and a given

frequency (bandwith) .

Indeed, under these assumptions, the open loop model between the control torque and the pointing error on

each axis is where the nominal inertia (or IatG in the following MATLAB sequence) of

the whole spacecraft at the point B can be computed from the model Gu:

% Tunable parameter initialization:
% Total mass on the nominal model:
Mtot=inv(dcgain(Gu.NominalValue));
IatG=Mtot(4:6,4:6);

Then the tuning and ensures the wanted closed-loop dynamics and a

distubance rejection function expressed as:

.

Thus the minimal bandwith required to meet the absolute pointing error requirement in steady state

() is .

The frequency of the first order low pass filter is tuned at on each axis.

This initial tuning, based on simplified assumptions (it will be shown that it does not verify the requirement Req2
and does not minimize Req3), is useful to initialize the non-convex optimization problem presented in next

section. It can be implemented according to the following MATLAB sequence:

% Required bandwidth on each axis:
wACS=sqrt(Tpert./(diag(IatG).*APE));
% with a damping ratio:
xiACS=0.7;
% Tunable parameter initialization:
Kp_x=IatG(1,1)*wACS(1)^2;
Kv_x=IatG(1,1)*2*xiACS*wACS(1);
Kp_y=IatG(2,2)*wACS(2)^2;
Kv_y=IatG(2,2)*2*xiACS*wACS(2);
Kp_z=IatG(3,3)*wACS(3)^2;
Kv_z=IatG(3,3)*2*xiACS*wACS(3);
w_x=20*wACS(1); w_y=20*wACS(2); w_z=20*wACS(3);

The inputs and outputs of the closed-loop SIMULINK model SC_CL_model_1.slx, denoted , are:

5

•
 (Torb: 3 component input # 1): the normalized (w.r.t. Tpert) orbital disturbance (adimensional),

•
 (Ngyro: 3 component input # 4): the normalized (w.r.t. PSD_GYRO) gyro noise (),

•
 (Nsst: 3 component input # 5): the normalized (w.r.t. PSD_SST) star sensor noise (),

• (Torque: 3 component output # 1): the torque applied on the spacecraft by the reactions wheels (

),

•
 (ape: 3 component output # 2): the normalized (w.r.t. APE) attitude error (adimensional).

 denotes the closed-loop transfer from to for a given parametric uncertainty vector ,

a given geometric configuration and a given tunable parameter vector . denotes the closed-

loop transfer from the 6 component noise to .

In addition, the SIMULINK model has some labelled internal signals: (Sin) is the input disturbance

used to define the input sensitivity function .

3. Robust control design
The design is made using the MATLAB/SIMULINK interface slTuner by specifying the names of the tunable

blocks and the names of the signals used to express the various requirements:

SC_CL_model_1
P0=slTuner('SC_CL_model_1',{'Kpx','Kvx','wx','Kpy','Kvy','wy','Kpz','Kvz','wz'});
addPoint(P0,{'Torb','Sin','Ngyro','Nsst','Torque','ape'});

The first requirement or hard contraint Req1 on the pointing error reads:

and the corresponding MATLAB syntax is:

% Hard requirement on the closed-loop transfert:
% The gain from the normalized orbital disturbances to normalized APE:
Req1=TuningGoal.Gain('Torb','ape',1);
Req1.Name='ape/Spec';

The second requirement or hard constraint Req2 on the input sensitivity function reads:

and the corresponding MATLAB syntax is:

% Hard requirement on the input sensitivity function:
Req2=TuningGoal.Gain('Sin','Torque',gamma);

6

Req2.Name='Input sensitivity';

The performance index or soft constraint Req3 is:

 with

and the corresponding MATLAB syntax is:

% Soft requirement on the variance from sensor noises to
% the applied torque:
Req3=TuningGoal.Variance({'Ngyro','Nsst'},'Torque',1);
Req3.Name='Actuator Variance';

The optimization is done thanks to the function systune:

(Remark: if you do not wish to run systune, please load the variable OptimalDesign instead, which contains the

outputs that we obtained when running systune. The computation of systune can take several minutes.)

% Design optimisation:
rng(1) % to freeze the random number sequence from one run to the next.
[Popt,fBest,gBest,Info] = systune(P0,Req3,[Req1,Req2]);

Soft: [0.106,Inf], Hard: [1,1.62], Iterations = 135
Soft: [0.11,Inf], Hard: [1,1.16], Iterations = 128
Soft: [0.113,Inf], Hard: [1,1.09], Iterations = 129
Soft: [0.121,Inf], Hard: [1,1.01], Iterations = 119
Soft: [0.122,Inf], Hard: [1,1], Iterations = 117
Soft: [0.122,0.122], Hard: [1,1], Iterations = 131
Soft: [0.122,0.122], Hard: [1,1], Iterations = 162
Final: Soft = 0.122, Hard = 0.99975, Iterations = 921

gBest

gBest = 1×2
 0.9998 0.9997

Since the 2 components of gBest are lower than 1, the requirements Req1 and Req2 are met for any

parametric uncertainties and any geometric configurations (or at least according to the worst-case

parametric and geometric configurations found by systune).

fBest

fBest = 0.1222

fBest gives the worst-case performance index:

Then, one can get the optimal tuning of the 9 controller gains :

% Optimal tuning:
w_x=getBlockValue(Popt,'wx');w_x=w_x.d;
w_y=getBlockValue(Popt,'wy');w_y=w_y.d;
w_z=getBlockValue(Popt,'wz');w_z=w_z.d;
Kp_x=getBlockValue(Popt,'Kpx');Kp_x=Kp_x.d;
Kp_y=getBlockValue(Popt,'Kpy');Kp_y=Kp_y.d;

7

Kp_z=getBlockValue(Popt,'Kpz');Kp_z=Kp_z.d;
Kv_x=getBlockValue(Popt,'Kvx');Kv_x=Kv_x.d;
Kv_y=getBlockValue(Popt,'Kvy');Kv_y=Kv_y.d;
Kv_z=getBlockValue(Popt,'Kvz');Kv_z=Kv_z.d;

4. Optimal design analysis
It is now possible to analyse the frequency-domain responses of 2 constrained transfers (Req1 and Req2) from

random samples in the parametric space and the worst-case identified during the optimization process

(systune):

% Optimal design analysis:
PB1=getIOTransfer(Popt,'Torb','ape');
PB2=getIOTransfer(Popt,'Sin','Torque');

% Worst-cases identified by systune
% Best run (if the option 'randomestarts' is used):
[g,index]=min([Info.g]);
% Worst cases identified during the best run:
WCs=Info(index).wcPert;

The routine systune identified 7 worst-case parametric configurations. For example, the first one is :

WCs(1)

ans = struct with fields:
 IBx: 60.0000
 IBy: 32
 IBz: 64
 mB: 800
 tan_Theta_div4: 1
 w1: 4.4800
 w2: 23.1600
 w3: 42.4800

The frequency domain response relative to Req1 (absolute pointing error in response to the orbital disturbance)

is plotted:

figure
figReq1=gcf;
viewGoal(Req1,PB1)
hold on
sigma(usubs(PB1,WCs),'-r') % worst performance
legend('Principal gain','Max Gain','Worst-cases','Location','southwest')

8

The hard constraint Req1, representing the absolute pointing error in response to the orbital disturbance, is met

over all parametric configurations detected by systune, and saturated at the null frequency for any values of the

parametric vector and the geometric configuration.

The frequency domain response relative to Req2 (sensitivity function, determining the stability margins) is

plotted:

figure
figReq2=gcf;
viewGoal(Req2,PB2)
hold on
sigma(usubs(PB2,WCs),'-r') % worst performance:
legend('Principal gain','Max Gain','Worst-cases','Location','southeast')

9

The hard constraint Req2, representing the sensitivity function and imposing a lower bound on the disc margin,

is met over all parametric configurations detected by systune, and saturated in low frequency (around 2 rad/s)

and at the frequency of the first flexible mode (around 12 rad/s). Note the axis-per-axis stability margins (gain

margins and phase margins) are largely better than the convervative lower bounds induced from Req2 (gain

margin , phase margin) , as shown on the following Nichols frequency-

domain responses of the open-loop transfer function (when the loop is opened on the system input):

% Nichols plot of the open-loop transfer function:
% the loop is opened at the system input:
L = -getLoopTransfer(Popt,'Torque') ;
figure
for ii=1:3
 FDBCK=eye(3);
 FDBCK(ii,ii)=0; % only the loop on channel # ii is opened!
 BFii=feedback(L,FDBCK);
 subplot(1,3,ii);
 nichols(BFii(ii,ii));
 ngrid
 set(gca,'Ylim',[-100 20]);
end
set(gcf,'Units','normalized','Position',[0 0 1 0.5])

10

Finally, the performance index Req3 (variance of the actuator's torque in response to the measurement noise),

measured by fBest, can also be retrieved as the H2 norm of the transfer:

max(norm(usubs(getIOTransfer(Popt,{'Ngyro','Nsst'}, 'Torque'), WCs), 2))

ans = 0.1222

Remark: the controller computed in section 2 and which was used to initialize the optimization problem, does

not robustly verify Req2 and yields a slightly worse Req3:

figure
viewGoal(Req2,P0)

11

max(norm(usubs(getIOTransfer(P0,{'Ngyro','Nsst'}, 'Torque'), WCs), 2))%%%%%%%%%%%%%%%%%%%%%%

ans = 0.1274

5. V&V (Verification and Validation)
When a robust performance problem is submitted to systune, it is solved thanks to an efficient heuristic

allowing a set of worst-case models to be selected and used in a multi-model control design approach.

Nevertheless, a -analysis can be directly applied on the parametrized model Gu to give a performance

guarantee certificate. While previous section analyzed the robustness based on a sampling of the parametric

space helped with some worst-case configurations detected by systune, the results provided by the -analysis

guarantee that no worst-case configuration is missed over the whole parametric space. All the robustness

and worst-case analysis tools provided by the MATLAB Robust Control Toolbox (mussv, robstab,
robgain, wcgain, ...) can be direcly applied on the models provided by the SDTlib thanks to the LFT

(Linear Fractional Transformation) formalism used to represent these models.

Although this example is quite simple (7 uncertain parameters and 1 varying parameter), the high repetition

(32 occurrences) of makes the -analysis quite challenging. In the following MATLAB sequences, is

sampled over a grid with 72 points (every 5 degrees between -175 and 180) and the 2 hard requirements

are verified over the whole parametric space of the 7 other uncertain parameters. The MATLAB code is

commented because its run is about 45 minutes. The results of the analyses are saved in the data file

Mu_analysis_data.mat

Worst-case pointing performance:

%OPT = wcOptions;
%OPT.MussvOptions='a';
%ii=0;
theta_grid=[-175:5:180];
% for theta=theta_grid;
% ii=ii+1;
% PB1ii=usubs(uss(PB1),'tan_Theta_div4',tan(theta*pi/180/4));
% [WCG1(ii),WCU1(ii)]=wcgain(PB1ii,OPT);
% end
% save Mu_analysis_data WCG1 WCU1
load Mu_analysis_data
figure
plot(theta_grid,[WCG1(:).UpperBound],'Linewidth',2);
hold on
plot(theta_grid,[WCG1(:).LowerBound],'Linewidth',2);
plot(theta_grid,1*ones(size(theta_grid)),'k--','Linewidth',2)
xlabel('\theta (deg)')
ylabel('\mu bound')
legend('Upper bound', 'Lower bound', 'Requirement')
title('Pointing performance (Req1) verification')

12

The bounds are independent of the solar array configuration . The upperbound is just above 1 but

no worst-case parametric configuration violating the pointing requirement was isolated (the lower bound

is always under 1). On the frequency-response of the ape/Spec, it can be also verified that the pointing

requirement is actually saturated in low frequency for all parametric configurations. The next analysis result on

the disc margin is more interesting.

Worst-case disc margin:

% for theta=theta_grid;
% ii=ii+1;
% PB2ii=usubs(uss(PB2),'tan_Theta_div4',tan(theta*pi/180/4));
% [WCG2(ii),WCU2(ii)]=wcgain(PB2ii,OPT);
% end
% save Mu_analysis_data WCG2 WCU2 WCG1 WCU1
load Mu_analysis_data
figure
plot(theta_grid,[WCG2(:).UpperBound],'Linewidth',2);
hold on
plot(theta_grid,[WCG2(:).LowerBound],'Linewidth',2);
plot(theta_grid,1.5*ones(size(theta_grid)),'k--','Linewidth',2)
xlabel('\theta (deg)')
ylabel('\mu bound')
legend('Upper bound', 'Lower bound', 'Requirement')
title('Disc margin (Req2) verification')

13

Here we can conclude that some worst-case parametric configurations violating the disc margin requirement

were isolated around and . However the disc margin guarrenteed by the upper bound is

very close to the requirement and highlights that these worst-cases are only marginal.

The worst case configuration can be characterized

[wc,index]=max([WCG2(:).LowerBound]);
WCU2(index)

ans = struct with fields:
 IBx: 60.0000
 IBy: 32
 IBz: 64
 mB: 808.3372
 w1: 6.7200
 w2: 15.5501
 w3: 42.4800

theta_grid(index)

ans = 155

and analyzed in the frequency domain:

figure(figReq2)
WCplant=usubs(PB2,WCU2(index));
WCplant=usubs(WCplant,'tan_Theta_div4',tan(theta_grid(index)*pi/180/4));
sigma(WCplant,...
 linspace(WCG2(index).CriticalFrequency*0.9,WCG2(index).CriticalFrequency*1.1,200),'-g') % worst performance:

14

legend('Principal gain','Max Gain','Worst-cases (systune)',...
 'Worst cases (mu-analysis)','Location','southeast')
axis([WCG2(index).CriticalFrequency*0.95,WCG2(index).CriticalFrequency*1.05,...
 20*log10(WCG2(index).LowerBound*0.99),20*log10(WCG2(index).LowerBound*1.01)])

This Figure focuses the frequency domain response of the worst case identified by the analysis around the

critical frequency. The worst-case configuration (with regard to the stability margin requirement Req2) is

reached when the mass/inertia of the main body are close to their lower bounds (this is quite logic).

The grid of could be refined for even more precise results, and the computation time would only increase

linearly with the size of the grid (since there is only one parameter that is gridded). For example, the figure

Mu_req2_finer.fig was computed with a finner grid on (sampled every degree), and took 8 hours of

computation (10 times longer). Let us note that a Monte-Carlo analysis would require to refine the grid over all

8 parameters, resulting in a much higher computational cost.

open('Mu_req2_finer.fig')

15

6. Comparison with a non robust synthesis
One main interest of the parametric models derived with the SDTlib is to perform directly control design with

robust performances thanks to systune, as presented in section 3.

The following Matlab sequence computes a controller on the nominal model . Then, analyses are

performed a posteriori to validate it on the uncertain and varying model (Gu). It is shown that the

requirements are not robustly met.

Controller design on the nominal model with the set of requirements:

Gu_save=Gu;
Gu=Gu.NominalValue;
Kp_x=IatG(1,1)*wACS(1)^2;
Kv_x=IatG(1,1)*2*xiACS*wACS(1);
Kp_y=IatG(2,2)*wACS(2)^2;
Kv_y=IatG(2,2)*2*xiACS*wACS(2);
Kp_z=IatG(3,3)*wACS(3)^2;
Kv_z=IatG(3,3)*2*xiACS*wACS(3);
w_x=20*wACS(1); w_y=20*wACS(2); w_z=20*wACS(3);
P0=slTuner('SC_CL_model_1',{'Kpx','Kvx','wx','Kpy','Kvy','wy','Kpz','Kvz','wz'});
addPoint(P0,{'Torb','Sin','Ngyro','Nsst','Torque','ape'});
[Popt,fBest,gBest,Info] = systune(P0,Req3,[Req1,Req2]);

Final: Soft = 0.106, Hard = 0.99983, Iterations = 135

% Optimal tuning:

16

w_x=getBlockValue(Popt,'wx');w_x=w_x.d;
w_y=getBlockValue(Popt,'wy');w_y=w_y.d;
w_z=getBlockValue(Popt,'wz');w_z=w_z.d;
Kp_x=getBlockValue(Popt,'Kpx');Kp_x=Kp_x.d;
Kp_y=getBlockValue(Popt,'Kpy');Kp_y=Kp_y.d;
Kp_z=getBlockValue(Popt,'Kpz');Kp_z=Kp_z.d;
Kv_x=getBlockValue(Popt,'Kvx');Kv_x=Kv_x.d;
Kv_y=getBlockValue(Popt,'Kvy');Kv_y=Kv_y.d;
Kv_z=getBlockValue(Popt,'Kvz');Kv_z=Kv_z.d;

Validation on the uncertain and varying model Gu:

Gu=Gu_save;
Pval=slTuner('SC_CL_model_1',{'Kpx','Kvx','wx','Kpy','Kvy','wy','Kpz','Kvz','wz'});
addPoint(Pval,{'Torb','Sin','Ngyro','Nsst','Torque','ape'});
PB1=getIOTransfer(Pval,'Torb','ape');
PB2=getIOTransfer(Pval,'Sin','Torque');
figure
viewGoal(Req1,PB1)

figure
viewGoal(Req2,PB2)

17

These analyses allow to conclude that, when designing the controller on the nominal plant:

• the pointing error requirement is still (almost) met when adding parametric uncertainties,

• but the disc margin requirement is largely exceeded when adding parametric uncertainties.

Thus, a robust control design approach is strongly recommended on this type of problems, and
therefore, parametric models are needed as early as possible in the preliminary design process. It is the
main goal of SDTlib to provide such models dependent on uncertain or variable parameters.

7. Summary

In summary, the following points were addressed :

• Modeling: A complete dynamical model of the spacecraft was proposed. The model was easily

computed by assembling the individual blocks representing the different elements of the spacecraft.

Actuators dynamics, and sensors noise and delays were also implemented. Moreover, all parametric

configurations of the uncertain parameters (mechanical parameters) and variable parameters (angular

configuration of the solar arrays) are regrouped in one single model, based on the LFT framework. This

parametric model enables the tools from the robust control toolbox, as follows.

18

• Control architecture: A classical structure, based on proportionnal-derivative controllers with a low-pass

filter, was fixed. An initial guess was proposed, which did not fulfill all the requirements but was helpful to

initialize the controller design as a non-convex optimization problem.

• Controller design: The control problem was formulated as an H-infinity optimization problem, which

was solved with the routine systune. It allowed to minimize the variance of the actuator in response to

the measurement noise, while pushing the requirements in pointing performance and stability margins

to the admissible limit. Formulating all these constraints in one single optimization problem allowed us

to optimize the performance while taking full advantage of the system’s capacity, without iterating on

the controller design while verifying the requirements a posteriori, as it would be the case with more

traditionnal methods.

• Robustness: Moreover, this optimization was carried out while dynamically detecting the worst-case

parametric configurations using reliable heuristics. As a consequence, the requirements are fulfilled even

in the worst-case configurations detected by systune, which gives very good robustness properties to

the controller. We also showed that the same optimization problem, when solved on the nominal plant

(not taking into account the parametric uncertainties), largely exceeded the stability margins requirement.

Taking into account the parametric uncertainties directly in the controller design allowed us to avoid

tedious iterations with the V&V process.

• Validation: Although the -analysis could not be directly applied over the whole parametric space

because of the number of repetitions of the parameter , an analysis was performed over a grid of

values of . For each value of the grid, the analysis was performed over the whole parametric space of

the 7 other uncertain parameters (without any gridding approximation for these 7 parameters). The lower

bound showed that the requirement was exceeded for some parametric configurations. However, the

upper bound provided a formal guarantee (for each angular configuration of the grid) that this excess is

only marginal. This analysis was performed in reasonable time (less than 1 hour); the grid of could

be refined for even more precise results, and the computation time would only increase linearly with

the size of the grid (since there is only one parameter that is gridded). Let us note that a Monte-Carlo

analysis would require to refine the grid over all 8 parameters, resulting in a much higher computational

cost.

• General methodology: This whole procedure can be done early in the project phase, allowing to

finely model the pointing error budget and guarantee the performance requirements with an adequate

controller. The procedure can easily be repeated in case of a design change or when the uncertainties

related to the mechanical design are narrowed down as the project advances. Essentially, it reduces the

design iterations to reduce the time and increase the reliability of the project.

Final remark: this demo file illustrated the capacity of the SDTlib for the modeling, analysis and control of

space systems in a relatively simple application case. More complexe scenarios are highlighted in the file

GetStarted.mlx, including for example other sources of microvibrations (reaction wheel imbalances, solar

array drive mechanism), control/structure co-design approaches, on-orbit servicing scenarios, or experimental

validations.

19

